9,412 research outputs found

    Intranight optical variability of radio-quiet BL Lacertae objects

    Full text link
    Aims: Intranight variation (or microvariation) is a common phenomenon of radio-loud BL Lac objects. However, it is not clear whether the recently found radio-quiet BL Lac objects have the same properties. The occurrence rate of intranight variation is helpful in distinguishing the mechanism of the continuum of radio-quiet BL Lac objects. Methods: We conducted a photometric monitoring of 8 radio-quiet BL Lac objects by the Xinglong 2.16m and Lijiang 2.4m telescopes. The differential light curves are calculated between each target and two comparison stars. To quantify the variation, the significance of variation is examined by a scaled FF-test. Results: No significant variation is found in the 11 sessions of light curves of 8 radio-quiet BL Lac objects (one galactic source is excluded). The lack of microvariation in radio-quiet BL Lac objects is consistent with the detection rate of microvariation in normal radio-quiet AGNs, but much lower than for radio-loud AGNs. This result indicates that the continua of the radio-quiet BL Lac objects are not dominated by jets that will induce frequent microvariations.Comment: Accepted for publication in Astronomy and Astrophysics; 7 pages, 1 figure, 3 table

    Parameter constraints in a near-equipartition model with multi-frequency \emph{NuSTAR}, \emph{Swift} and \emph{Fermi-LAT} data from 3C 279

    Get PDF
    Precise spectra of 3C 279 in the 0.5-70 keV range, obtained during two epochs of \emph{Swift} and \emph{NuSTAR} observations, are analyzed using a near-equipartition model. We apply a one-zone leptonic model with a three-parameter log-parabola electron energy distribution (EED) to fit the \emph{Swift} and \emph{NuSTAR} X-ray data, as well as simultaneous optical and \emph{Fermi}-LAT γ\gamma-ray data. The Markov Chain Monte Carlo (MCMC) technique is used to search the high-dimensional parameter space and evaluate the uncertainties on model parameters. We show that the two spectra can be successfully fit in near-equipartition conditions, defined by the ratio of the energy density of relativistic electrons to magnetic field ζe\zeta_{\rm e} being close to unity. In both spectra, the observed X-rays are dominated by synchrotron-self Compton photons, and the observed γ\gamma rays are dominated by Compton scattering of external infrared photons from a surrounding dusty torus. Model parameters are well constrained. From the low state to the high state, both the curvature of the log-parabola width parameter and the synchrotron peak frequency significantly increase. The derived magnetic fields in the two states are nearly identical (∼1\sim1\ G), but the Doppler factor in the high state is larger than that in the low state (∼\sim28 versus ∼\sim18). We derive that the gamma-ray emission site takes place outside the broad-line region, at ≳\gtrsim 0.1 pc from the black hole, but within the dusty torus. Implications for 3C 279 as a source of high-energy cosmic-rays are discussed.Comment: accepted by MNRA

    Rotational Behaviors and Magnetic Field Evolution of Radio Pulsars

    Full text link
    The observed long-term spin-down evolution of isolated radio pulsars cannot be explained by the standard magnetic dipole radiation with a constant braking torque. However how and why the torque varies still remains controversial, which is an outstanding problem in our understanding of neutron stars. We have constructed a phenomenological model of the evolution of surface magnetic fields of pulsars, which contains a long-term decay modulated by short-term oscillations; a pulsar's spin is thus modified by its magnetic field evolution. The predictions of this model agree with the precisely measured spin evolutions of several individual pulsars; the derived parameters suggest that the Hall drift and Hall waves in the NS crusts are probably responsible for the long-term change and short-term quasi-periodical oscillations, respectively. Many statistical properties of the timing noise of pulsars can be well re-produced with this model, including correlations and the distributions of the observed braking indices of the pulsars, which span over a range of more than 100 millions. We have also presented a phenomenological model for the recovery processes of classical and slow glitches, which can successfully model the observed slow and classical glitch events without biases.Comment: 6 pages, 9 figures, submitted to conference proceedings of SMFNS2013 (Strong electromagnetic field and neutron stars 2013
    • …
    corecore